667 research outputs found

    The genetic architecture of fitness in a seed beetle: assessing the potential for indirect genetic benefits of female choice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantifying the amount of standing genetic variation in fitness represents an empirical challenge. Unfortunately, the shortage of detailed studies of the genetic architecture of fitness has hampered progress in several domains of evolutionary biology. One such area is the study of sexual selection. In particular, the evolution of adaptive female choice by indirect genetic benefits relies on the presence of genetic variation for fitness. Female choice by genetic benefits fall broadly into good genes (additive) models and compatibility (non-additive) models where the strength of selection is dictated by the genetic architecture of fitness. To characterize the genetic architecture of fitness, we employed a quantitative genetic design (the diallel cross) in a population of the seed beetle <it>Callosobruchus maculatus</it>, which is known to exhibit post-copulatory female choice. From reciprocal crosses of inbred lines, we assayed egg production, egg-to-adult survival, and lifetime offspring production of the outbred F1 daughters (F1 productivity).</p> <p>Results</p> <p>We used the bio model to estimate six components of genetic and environmental variance in fitness. We found sizeable additive and non-additive genetic variance in F<sub>1 </sub>productivity, but lower genetic variance in egg-to-adult survival, which was strongly influenced by maternal and paternal effects.</p> <p>Conclusion</p> <p>Our results show that, in order to gain a relevant understanding of the genetic architecture of fitness, measures of offspring fitness should be inclusive and should include quantifications of offspring reproductive success. We note that our estimate of additive genetic variance in F<sub>1 </sub>productivity (<it>CV</it><sub><it>A </it></sub>= 14%) is sufficient to generate indirect selection on female choice. However, our results also show that the major determinant of offspring fitness is the genetic interaction between parental genomes, as indicated by large amounts of non-additive genetic variance (dominance and/or epistasis) for F<sub>1 </sub>productivity. We discuss the processes that may maintain additive and non-additive genetic variance for fitness and how these relate to indirect selection for female choice.</p

    Female Genitalia Concealment Promotes Intimate Male Courtship in a Water Strider

    Get PDF
    Violent coercive mating initiation is typical for animals with sexual conflict over mating. In these species, the coevolutionary arms-race between female defenses against coercive mating and male counter-adaptations for increased mating success leads to coevolutionary chases of male and female traits that influence the mating. It has been controversial whether one of the sexes can evolve traits that allow them to “win” this arms race. Here, we use morphological analysis (traditional and scanning electron micrographs), laboratory experiments and comparative methods to show how females of a species characterized by typical coercive mating initiation appear to “win” a particular stage of the sexual conflict by evolving morphology to hide their genitalia from direct, forceful access by males. In an apparent response to the female morphological adaptation, males of this species added to their typically violent coercive mounting of the female new post-mounting, pre-copulatory courtship signals produced by tapping the water's surface with the mid-legs. These courtship signals are intimate in the sense that they are aimed at the female, on whom the male is already mounted. Females respond to the signals by exposing their hidden genitalia for copulatory intromission. Our results indicate that the apparent victory of coevolutionary arms race by one sex in terms of morphology may trigger evolution of a behavioral phenotype in the opposite sex

    A new era for Journal of Biological Research-Thessaloniki

    Full text link

    Female Sexual Polymorphism and Fecundity Consequences of Male Mating Harassment in the Wild

    Get PDF
    Genetic and phenotypic variation in female response towards male mating attempts has been found in several laboratory studies, demonstrating sexually antagonistic co-evolution driven by mating costs on female fitness. Theoretical models suggest that the type and degree of genetic variation in female resistance could affect the evolutionary outcome of sexually antagonistic mating interactions, resulting in either rapid development of reproductive isolation and speciation or genetic clustering and female sexual polymorphisms. However, evidence for genetic variation of this kind in natural populations of non-model organisms is very limited. Likewise, we lack knowledge on female fecundity-consequences of matings and the degree of male mating harassment in natural settings. Here we present such data from natural populations of a colour polymorphic damselfly. Using a novel experimental technique of colour dusting males in the field, we show that heritable female colour morphs differ in their propensity to accept male mating attempts. These morphs also differ in their degree of resistance towards male mating attempts, the number of realized matings and in their fecundity-tolerance to matings and mating attempts. These results show that there may be genetic variation in both resistance and tolerance to male mating attempts (fitness consequences of matings) in natural populations, similar to the situation in plant-pathogen resistance systems. Male mating harassment could promote the maintenance of a sexual mating polymorphism in females, one of few empirical examples of sympatric genetic clusters maintained by sexual conflict

    Allometric trajectories of body and head morphology in three sympatric Arctic charr (Salvelinus alpinus (L.)) morphs

    Get PDF
    A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions

    Interpopulation variation in female remating is attributable to female and male effects in Callosobruchus chinensis

    Get PDF
    The evolution of female multiple mating is best understood by consideration of male and female reproductive perspectives. Females should usually be selected to remate at their optimum frequencies whereas males should be selected to manipulate female remating to their advantage. Female remating behavior may therefore be changed by variation of male and female traits. In this study, our objective was to separate the effects of female and male strains on female remating for the adzuki bean beetle, Callosobruchus chinensis, for which there is interstrain variation in female remating frequency. We found that interstrain variation in female remating is primarily attributable to female traits, suggesting genetic variation in female receptivity to remating in C. chinensis. Some interstrain variation in female remating propensity was attributable to an interaction between female and male strains, however, with the males of some strains being good at inducing nonreceptivity in females from one high-remating strain whereas others were good at inducing copulation in nonvirgin females from the high-remating strain. There is, therefore, interstrain variation in male ability to deter females from remating and in male ability to mate successfully with nonvirgin females. These results suggest that mating traits have evolved along different trajectories in different strains of C. chinensis.</p

    Axial heterogeneity and filtered-load dependence of proximal bicarbonate reabsorption

    Get PDF
    A theoretical model was developed to examine the role of physical and chemical factors in the control of bicarbonate reabsorption in the renal proximal tubule. Included in the model were axial and radial variations in the concentrations of HCO3-, CO2 and related chemical species in the tubule lumen and epithelial cells. Relations between these concentrations and the solute fluxes across the brush border and basolateral membranes were also included, as were reaction rate and equilibrium expressions to describe the various buffering processes in the lumen and cells. The two most critical membrane parameters, the rate constant for H+ secretion at the brush border and the effective permeability of HCO3- at the basolateral membrane, were evaluated by comparing model predictions with available free-flow micropuncture data in the rat. It was found that the experimental observations could be explained only by decreasing one or both of these membrane parameters with axial position, suggesting a progressive decrease in HCO3- reabsorptive capacity along the tubule. For single nephron filtered loads of HCO3- up to about 1,400 pmol/min, absolute bicarbonate reabsorption was predicted to increase nearly in proportion to filtered load, whereas it was calculated to be relatively constant at higher filtered loads, irrespective of how filtered load was assumed to be varied. These predictions are in excellent agreement with most of the available micropuncture data in rats, as is the prediction that HCO3- reabsorption should change in parallel with CO2 partial pressure in the filtrate, at a given filtered load of HCO3–. Certain discrepancies between the model predictions and experimental observations are evident at very high filtered loads, and the implications of these are discussed in terms of possible adaptive responses of the tubule

    Male water striders attract predators to intimidate females into copulation

    Get PDF
    Despite recent advances in our understanding of sexual conflict and antagonistic coevolution between sexes, the role of interspecific interactions, such as predation, in these evolutionary processes remains unclear. In this paper, we present a new male mating strategy whereby a male water strider Gerris gracilicornis intimidates a female by directly attracting predators as long as she does not accept the male's coercive copulation attempt. We argue that this male strategy is a counteradaptation to the evolution of the female morphological shield protecting her genitalia from coercive intromission by water strider males. The G. gracilicornis mating system clearly represents an effect expected from models of the coevolutionary arms race between sexes, whereby one sex causes a decrease in the fitness component of the other sex. Moreover, our study demonstrates a crucial role that interspecific interactions such as predation can have in the antagonistic coevolution between sexes

    Coevolution of Male and Female Genital Morphology in Waterfowl

    Get PDF
    Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5–>40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity in female genital morphology in waterfowl and describe variation vaginal morphology that is unprecedented in birds. This variation comprises two anatomical novelties: (i) dead end sacs, and (ii) clockwise coils. These vaginal structures appear to function to exclude the intromission of the counter-clockwise spiralling male phallus without female cooperation. A phylogenetically controlled comparative analysis of 16 waterfowl species shows that the degree of vaginal elaboration is positively correlated with phallus length, demonstrating that female morphological complexity has co-evolved with male phallus length. Intersexual selection is most likely responsible for the observed coevolution, although identifying the specific mechanism is difficult. Our results suggest that females have evolved a cryptic anatomical mechanism of choice in response to forced extra-pair copulations

    Increasing body mass index at diagnosis of diabetes in young adult people during 1983-1999 in the Diabetes Incidence Study in Sweden (DISS).

    Get PDF
    Objective. To study trends in body mass index (BMI) at diagnosis of diabetes in all young Swedish adults in the age range of 15-34 years registered in a nation-based registry. Design. The BMI was assessed at diagnosis in diabetic patients 15-34 years of age at diagnosis, for a period of 17 years (1983-1999). Islet cell antibodies (ICA) were measured during three periods (1987-1988, 1992-1993 and 1998-1999). Setting. A nationwide study (Diabetes Incidence Study in Sweden). Subjects. A total of 4727 type 1 and 1083 type 2 diabetic patients. Main outcome measures. Incidence-year specific BMI adjusted for age, gender and time of diagnosis (month). Results. Body mass index at diagnosis increased significantly both in type 1 (21.4 ± 3.6 to 22.5 ± 4.0; P < 0.0001) and in type 2 (27.4 ± 6.8 to 32.0 ± 6.0; P < 0.0001) diabetic patients, also when adjusted for age, gender and month of diagnosis. A similar significant increase in BMI was found in type 1 diabetic patients and in type 2 diabetic patients in the periods 1987-1988, 1992-1993 and 1998-1999; years when ICA were assessed and considered in the classification of diabetes. Despite this increase in BMI, there was no increase in the incidence of diabetes in young-adult people in Sweden. Conclusion. Body mass index at diagnosis of diabetes in subjects 15-34 years of age has substantially increased during 1983-1999 in Sweden when adjusted for age, gender and month of diagnosis
    corecore